Molecular characterization of carbamoyl-phosphate synthetase (CPS1) deficiency using human recombinant CPS1 as a key tool.
نویسندگان
چکیده
The urea cycle disease carbamoyl-phosphate synthetase deficiency (CPS1D) has been associated with many mutations in the CPS1 gene [Häberle et al., 2011. Hum Mutat 32:579-589]. The disease-causing potential of most of these mutations is unclear. To test the mutations effects, we have developed a system for recombinant expression, mutagenesis, and purification of human carbamoyl-phosphate synthetase 1 (CPS1), a very large, complex, and fastidious enzyme. The kinetic and molecular properties of recombinant CPS1 are essentially the same as for natural human CPS1. Glycerol partially replaces the essential activator N-acetyl-l-glutamate (NAG), opening possibilities for treating CPS1D due to NAG site defects. The value of our expression system for elucidating the effects of mutations is demonstrated with eight clinical CPS1 mutations. Five of these mutations decreased enzyme stability, two mutations drastically hampered catalysis, and one vastly impaired NAG activation. In contrast, the polymorphisms p.Thr344Ala and p.Gly1376Ser had no detectable effects. Site-limited proteolysis proved the correctness of the working model for the human CPS1 domain architecture generally used for rationalizing the mutations effects. NAG and its analogue and orphan drug N-carbamoyl-l-glutamate, protected human CPS1 against proteolytic and thermal inactivation in the presence of MgATP, raising hopes of treating CPS1D by chemical chaperoning with N-carbamoyl-l-glutamate.
منابع مشابه
Cell and Gene Therapy for Carbamoyl Phosphate Synthetase 1 Deficiency
Carbamoyl phosphate synthetase 1 (CPS1) is the first and rate-limiting enzyme in the urea cycle. CPS1 deficiency is a devastating condition, which is clinically characterized by periodic episodes of life-threatening hyperammonemia. Currently, there is no cure for CPS1 deficiency except for liver transplantation, which is limited by a severe shortage of donors and significant risk of mortality a...
متن کاملUnderstanding carbamoyl phosphate synthetase (CPS1) deficiency by using the recombinantly purified human enzyme: effects of CPS1 mutations that concentrate in a central domain of unknown function.
Carbamoyl phosphate synthetase 1 deficiency (CPS1D) is an inborn error of the urea cycle that is due to mutations in the CPS1 gene. In the first large repertory of mutations found in CPS1D, a small CPS1 domain of unknown function (called the UFSD) was found to host missense changes with high frequency, despite the fact that this domain does not host substrate-binding or catalytic machinery. We ...
متن کاملTwo novel mutations in the CPS1 gene of a newborn with carbamoyl phosphate synthetase 1 deficiency identified by next-generation sequencing
Carbamoyl phosphate synthetase 1 deficiency (CPS1D) is a rare autosomal recessive hereditary disease which usually presents as lethal hyperammonemia. Here we report the case of a newborn infant with lethal hyperammonemia. Blood liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed increased concentrations of alanine, glutamine and histidine. Urine gas chromatography-mass spe...
متن کاملStructure of human carbamoyl phosphate synthetase: deciphering the on/off switch of human ureagenesis
Human carbamoyl phosphate synthetase (CPS1), a 1500-residue multidomain enzyme, catalyzes the first step of ammonia detoxification to urea requiring N-acetyl-L-glutamate (NAG) as essential activator to prevent ammonia/amino acids depletion. Here we present the crystal structures of CPS1 in the absence and in the presence of NAG, clarifying the on/off-switching of the urea cycle by NAG. By bindi...
متن کاملAmmonia-lowering activities and carbamoyl phosphate synthetase 1 (Cps1) induction mechanism of a natural flavonoid
OBJECTIVE Ammonia detoxification is essential for physiological well-being, and the urea cycle in liver plays a predominant role in ammonia disposal. Nobiletin (NOB), a natural dietary flavonoid, is known to exhibit various physiological efficacies. In the current study, we investigated a potential role of NOB in ammonia control and the underlying cellular mechanism. MATERIALS/METHODS C57BL/6...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human mutation
دوره 34 8 شماره
صفحات -
تاریخ انتشار 2013